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Abstract

We discuss several PT -symmetric deformations of superderivatives. Based
on these various possibilities, we propose new families of complex PT -
symmetric deformations of the supersymmetric Korteweg–de Vries equation.
Some of these new models are mere fermionic extensions of the former in
the sense that they are formulated in terms of superspace-valued superfields
containing bosonic and fermionic fields, breaking however the supersymmetry
invariance. Nonetheless, we also find extensions, which may be viewed as new
supersymmetric Korteweg–de Vries equation. Moreover, we show that these
deformations allow for a non-Hermitian Hamiltonian formulation.

PACS numbers: 03.65.−w, 02.30.Mv, 02.30.Ik

1. Introduction

PT -symmetry, that is the invariance under a simultaneous parity transformation P : x → −x

and time reversal T : t → −t , is a very desirable property to have in a physical model
without dissipation. For a Hamiltonian system it can be exploited to guarantee the reality
of the corresponding spectrum, even though the Hamiltonian might be non-Hermitian [1–3].
However, even for non-Hamiltonian systems this principle can be used to construct interesting
new complex extended models, e.g. [4–9]. See [10, 11] for a review and some recent results
of this field of research.

Here we commence with an integrable model, which are well known to exhibit many
extremely interesting features on the classical as well as on the quantum level. Due to their
rich structure it is a very natural and common procedure to take these models as starting points
and study new models closely related to them. We intend here to perturb or deform such a
model in a PT -symmetric manner. Concerning integrable models only few extensions of such
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type have been constructed. So far several extensions related to Calogero–Moser–Sutherland
models [12–17] and the Korteweg–de Vries (KdV) equations [8, 9] have been investigated.
Based on the observation that also the supersymmetric version of the KdV equation (sKdV) is
PT -symmetric, the main aim of this paper is to extend these types of analyses to this equation.

Our paper is organized as follows: in section 2 we recall some basic facts about the
sKdV equation and demonstrate how the PT -symmetry manifests itself in these equations.
We exploit these observations to discuss various versions of PT -symmetrically deformed
superderivatives and demonstrate how they can be employed to construct new models. In
section 3 we provide a supersymmetric Hamiltonian version of such extensions. We state our
conclusions in section 4.

2. PT -symmetric extensions of the sKdV equation

Let us first fix our notations and recall some known facts about the sKdV equation. There
exist various fermionic extensions of the KdV equation in terms of superfields, which are
either supersymmetric [18] or break this symmetry [19, 20] and are therefore mere fermionic
extensions. We take as a starting point the former case and focus on the one-parameter family
of the sKdV equation as derived first by Mathieu in [18]

�t = −D6� + λD2(�D�) + (6 − 2λ)D�D2�. (2.1)

Here λ is a real constant and �(x, θ) denotes a fermionic superfield

�(x, θ) = ξ(x) + θu(x) (2.2)

defined in terms of the fermionic (anticommuting) field ξ(x), the usual bosonic (commuting)
KdV field u(x) and the anticommuting superspace variable θ . Furthermore D in (2.1) denotes
the superderivative defined as

D = θ∂x + ∂θ . (2.3)

Expanding the superfield � in terms of component fields, as specified in (2.2), equation (2.1)
may be re-written as a set of two coupled equations

ut = −uxxx + 6uux − λξξxx, (2.4)

ξt = −ξxxx + (6 − λ) ξxu + λξux. (2.5)

When λ → 0 or ξ → 0 equation (2.4) reduces to the standard KdV equation. In superspace
the supersymmetry transformation is realized as

SUSY : x → x − η θ, θ → θ + η, (2.6)

with η being an anticommuting constant. As a consequence the superfield and its components
transform as

SUSY : � → � + ηu + θηξx, u → u + ηξx, ξ → ξ + ηu, (2.7)

i.e. a bosonic field is related to a fermionic one and vice versa. Equations (2.1), (2.4) and (2.5)
are designed to remain invariant under the changes (2.7).

In order to see how one can deform the sKdV equation in a PT -symmetric manner, we
need to establish first how this symmetry manifests itself. We observe that equation (2.1)
remains invariant under the following anti-linear symmetry transformation:

PT : t → −t, x → −x, i → −i, � → i�, D → −iD. (2.8)
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As a result of these properties of the superfield and superderivative we deduce that the
component fields and the superspace variable transform as

PT : u → u, ξ → iξ, θ → iθ. (2.9)

These transformations leave equations (2.4) and (2.5) invariant. Note that the PT -
transformation is an automorphism and we still have PT 2 = 1, as it should be.

Before we embark on the task of seeking PT -symmetric extensions of equation (2.1) or
its equivalent component version (2.4), (2.5 ), we shall define some deformations of derivatives
and their supersymmetric counterparts in a more generic fashion.

2.1. Deformed (super)derivatives

In the spirit of the construction in [8, 9] we will define some new superderivatives, which
respect the PT -transformation properties (2.8). For this purpose we recall how to employ an
ordinary deformed derivative ∂x,ε acting on some arbitrary PT -invariant function f (x)

∂x,εf (x) = −i(ifx)
ε, with ε ∈ R. (2.10)

The case ε = 1 corresponds to the standard undeformed case. Note further that this
deformed differential operator does not act distributively. We define higher derivatives by
acting successively with ordinary derivatives on ∂x,ε as

∂n
x,ε := ∂n−1

x ∂x,ε. (2.11)

Alternatively we could have introduced a nested version of (2.10) or possibly a mix of ∂x,ε and
∂x in succession such as ∂x,ε(∂x,ε · · · (∂x,εf (x) · · ·)) or ∂x,ε(∂x · · · (∂x,εf (x) · · ·)). These latter
possibilities do of course also not break the PT -symmetry, but they would insinuate a much
higher degree of nonlinearity than definition (2.11). More explicitly the first expressions for
(2.11) read

∂2
x,εf = −iε(ifx)

ε fxx

fx

, (2.12)

∂3
x,εf = −iε(ifx)

ε

[
fxxx

fx

+ (ε − 1)

(
fxx

fx

)2
]

, (2.13)

∂4
x,εf = −iε(ifx)

ε

[
(2 + ε(ε − 3))

(
fxx

fx

)3

+ 3(ε − 1)

(
fxx

fx

)2

fxxx +
fxxxx

fx

]
. (2.14)

...

Note that for ε = −1/2 the bracket in (2.13) simply becomes a Schwarzian derivative.
Obviously by construction the derivatives ∂n

x,ε and ∂n
x,ε=1 = ∂n

x transform in the same way
under a PT -transformation, i.e. PT : ∂n

x → (−1)n∂n
x and PT : ∂n

x,ε → (−1)n∂n
x,ε, which

gives rise to the simple construction principle: in a defining equation of a particular model
replace ∂n

x by ∂n
x,ε in order to introduce a new family of models.

Next we employ these deformations of ordinary derivatives to define a deformed version
of the superderivative (2.3)

Dε := θ∂x,ε + ∂θ . (2.15)

Clearly D and Dε have the same transformation properties with regard to (2.8) and (2.9). The
derivative with respect to the superspace variable is left undeformed as there is no natural
deformed counterpart to this. In the deformation of the standard derivative we could show
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that the minus sign results from the anti-linear nature of the PT -operator through the newly
introduced factor i rather than from ∂x . In contrast, for the derivative ∂θ we cannot implement
this feature, since in that case we have PT : ∂θ� → ∂θ�. Depending now on the way
the higher derivatives are defined one may obtain deformations only acting on the bosonic,
fermionic or possibly on both types of fields. Let us explore these possibilities.

2.1.1. PT -symmetric superderivatives of bosonic–fermionic type. As a first option we define
higher deformed superderivatives as

D2
ε := DεDε, (2.16)

Dn
ε := Dn−2D2

ε for n > 2. (2.17)

Accordingly the action on the superfield �(x, θ) is computed to

Dε� = θ∂x,εξ + u, (2.18)

D2
ε� = θ∂x,εu + ∂x,εξ, (2.19)

D3
ε� = θ∂2

x,εξ + ∂x,εu, (2.20)

...

D2n−1
ε � = θ∂n

x,εξ + ∂n−1
x,ε u, (2.21)

D2n
ε � = θ∂n

x,εu + ∂n
x,εξ. (2.22)

This means for n > 2 the derivatives acting on the fermionic as well as those acting on the
bosonic field are deformed. However, in general we would like to take ε to be an integer and
since ∂n

x,εξ = −i(iξx)
ε = 0 for ε = 2, 3, . . . this does not appear to be an interesting choice.

2.1.2. PT -symmetric superderivatives of fermionic type. Alternatively we may define

D̂n
ε := Dn−1Dε, for n > 1, (2.23)

in which case the action on the superfield �(x, θ) gives

D̂ε� = θ∂x,εξ + u, (2.24)

D̂2
ε� = θux + ∂x,εξ, (2.25)

D̂3
ε� = θ∂2

x,εξ + ux, (2.26)

...

D̂2n−1
ε � = θ∂n

x,εξ + ∂n−1
x u, (2.27)

D̂2n
ε � = θ∂n

x u + ∂n
x,εξ. (2.28)

Thus with this choice only the terms involving the derivatives acting on fermionic fields are
PT -symmetrically deformed, which for the reasons mentioned at the end of the last subsection
is even less exciting.

2.1.3. PT -symmetric superderivatives of bosonic type. It is clear from the above discussion
that the most interesting definitions will be those just involving deformations of derivatives

4



J. Phys. A: Math. Theor. 41 (2008) 392004 Fast Track Communication

acting on the bosonic fields. We may achieve this by defining

D̃2
ε := DεD, (2.29)

D̃n
ε := Dn−2D2

ε , for n > 2. (2.30)

In this case the action on the superfield �(x, θ) turns out to be

D̃ε� = θξx + u, (2.31)

D̃2
ε� = θ∂x,εu + ξx, (2.32)

D̃3
ε� = θξxx + ∂x,εu, (2.33)

...

D̃2n−1
ε � = θ∂n

x ξ + ∂n−1
x,ε u, (2.34)

D̃2n
ε � = θ∂n

x,εu + ∂n
x ξ. (2.35)

Thus with this choice we have shown that only the terms involving the derivatives acting on
the bosonic fields are PT -symmetrically deformed.

According to the principle that any function which transforms as PT : f → −f should be
deformed as f → −i(if )ε, we may also try to deform the superderivatives directly instead of
focussing on the part of it involving the ordinary derivatives. Observing thatPT : D� → D�,
this form of deformation cannot be applied to the superderivative of first order. However, we
may apply it to higher orders. We have PT : D2� → −iD2�,D3� → −D3� and therefore
we may consistently define

Ďn
ε := Dn, for n = 1, 2 (2.36)

Ď3
ε� := −i(iD3�)ε = ∂x,εu + iθε∂x,ε−1uξxx, (2.37)

Ďn
ε := Dn−3Ď3

ε , for n > 3. (2.38)

Taking only PT -symmetry as a guiding principle there are of course more possibilities.
For instance, we could have also nested the derivatives as Dε(Dε · · · Dεf ) · · ·)), or
Dε(Dε · · · Ď3

εf ) · · ·)), etc. For similar reasons as stated for the ordinary derivatives we
restrain here from these choices. Alternatively we could keep the ordinary superderivatives
up to some higher-order derivatives, since D4n−1� → −D4n−1� for n ∈ N, but the models
we are concerned with here do not involve such high order.

We may now use either of these possibilities in any of the terms in (2.1), giving rise to
many different options to formulate PT -symmetric extensions.

2.2. Construction of new models

We can replace the superderivatives by their deformed versions in various different terms and
in addition we may introduce different deformation parameters in the higher-order derivatives.
In order to explore some of these possibilities, let us first rewrite equation (2.1) as

�t = −D6� + 6D�D2� + λ�D3� − λD�D2�, (2.39)

by using the identities D2(�D�) = D2�D� + �D3� and D2�D� = D�D2�. Note
that these identities no longer hold in the deformed cases, such that we would have a
different starting point when deforming (2.1) directly. As discussed above, the purely bosonic
deformation is the most interesting one and we may therefore consider

�t = −D̃6
ε� + 6D̃κ�D̃2

κ� + λ�D̃3
μ� − λD̃ν�D̃2

ν�. (2.40)
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In order to remain as generic as possible we have introduced four different deformation
parameters ε, κ, μ and ν. The component version of (2.40) reads

ut = −∂3
x,εu + 6u∂x,κu − λξξxx + λu

(
∂x,μu − ∂x,νu

)
, (2.41)

ξt = −ξxxx + 6uξx + λ(ξ∂x,μu − uξx). (2.42)

The case μ = ν, κ = 1 constitutes a fermionic extension of the PT -symmetric deformation of
the KdV equation introduced in [9], which is obtained for ξ → 0. In turn the case μ = ν, ε = 1
reduces for ξ → 0 to the PT -symmetric deformation of the KdV equation introduced in [8].
Noting how a deformed derivative transforms under a supersymmetry transformation

SUSY : ∂x,εu → ∂x,εu + iηε∂x,ε−1uξxx, (2.43)

∂3
x,εu → ∂3

x,εu + iηε
(
∂3
x,ε−1uξxx + 2∂2

x,ε−1uξxxx + ∂x,ε−1uξxxxx

)
, (2.44)

it is easily seen that equations (2.41) and (2.42) are only invariant under the supersymmetry
transformations (2.7) in the case μ = ν = κ = ε = 1.

Instead of employing D → D̃ε let us now use the deformation D → Ďε. An interesting
possibility is to deform just the first term in (2.39) and consider

�t = −Ď6
ε� + 6D�D2� + λ�D3� − λD�D2�. (2.45)

Using (2.38), we find Ď6
ε� = θ∂3

x,εu + iε
(
∂2
x,ε−1uξxx + ∂x,ε−1uξxxx

)
, such that the component

version of (2.45) reads

ut = −∂3
x,εu + 6uux − λξξxx, (2.46)

ξt = −iε(∂2
x,ε−1uξxx + ∂x,ε−1uξxxx) + (6 − λ)uξx + λξux. (2.47)

Thus equation (2.45) may also be viewed as yet another fermionic extension of the PT -
symmetric deformation of the KdV equation of [9], to which (2.46) reduces in the limits
ξ → 0 or λ → 0. Interestingly this system is partially supersymmetric. We find that (2.46)
remains invariant under the supersymmetry transformation (2.7), but (2.47) does not
respect it.

Further interesting options are of course combinations of the above, such for instance

�t = −Ď6
ε� + 6D̃κ�D̃2

κ� + λ�Ď3
μ� − λD̃ν�D̃2

ν� (2.48)

or to add PT -invariant terms which vanish in the limit ε → 1. We will make use of the last
possibility in order to restore full supersymmetry.

A few comments are in order: there are of course various other options, such as for
instance to deform only one of the last two terms in (2.39), possibly together with the first
term. This would lead to a rather strange extension, which does not reduce to any of the known
PT -extended KdV equations for ξ → 0. These cases involve an additional term resulting
from the fact that the original sKdV equation was constructed as a one-parameter family taking
into account that the term 6uux can be supersymmetrized in various alternative ways. Further
options are to use the derivatives D̂ε or Dε, which yield similar equations as above with the
difference that also the derivatives acting on the ξ fields are deformed, which is, however, less
interesting for the reasons mentioned above.
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3. PT and supersymmetric non-Hermitian Hamiltonian deformations

Let us now recall the original motivation to consider PT -symmetrically extended models,
which was to exploit the feature that unbroken PT -symmetry guarantees the reality of the
corresponding spectrum. In this spirit it is highly desirable to discriminate between the models,
which are Hamiltonian systems and those which are not. It is well known that the sKdV
equation admits a Hamiltonian description for λ = 2, see [18], and it is interesting to investigate
whether this feature survives the deformation.

Making use of the usual properties for the Berezin integral
∫

dθ = 0 ,
∫

dθθ = 1, we
consider the Hamiltonian

Hε =
∫

dμ

[
�(D�)2 +

1

1 + ε
D2�Ď3

ε�

]
(3.1)

=
∫

dx

[
u3 − 2ξξxu − 1

1 + ε
(iux)

ε+1 − ε

1 + ε
(iux)

ε−1ξxξxx

]
, (3.2)

where we abbreviated
∫

dx dθ =:
∫

dμ. This Hamiltonian is a deformed version of the
sKdV Hamiltonian [18] and in addition a supersymmetrized version of the PT -symmetrically
deformed Hamiltonian [9], as it reduces to these Hamiltonians in the limits ε → 1 and ξ → 0,
respectively. By construction Hε is PT -symmetric, but in addition it is also supersymmetic,
which is most easily verified for the component version (3.2)

SUSY : Hε → Hε + η

∫
dx∂x

(
ξu2 +

iε−1

1 + ε
uε

xξx

)
= Hε. (3.3)

This means we can also think of Hε as a new supersymmetric version of the KdV Hamiltonian.
Unlike as for the KdV equation, which admits a bi-Hamiltonian structure [21], see also

[22], the sKdV equation is known to possess only one such structure [18], which respects
supersymmetry. The Poisson brackets are defined as{

F(μ),G(μ′)
}

:=
∫

dμ0
δF (μ)

δ�(μ0)
Dμ0

δG(μ′)
δ�(μ0)

. (3.4)

Using the same Poisson bracket structure gives rise to a deformed equation of motion. With
definition (3.4) we may then compute the corresponding flow as

�t = {�(μ),H } = D
δH

δ�
= D

[
δ
∫

dμH
δ�

]
, (3.5)

= D
∂H
∂�

+ D2 ∂H
∂(D�)

− D3 ∂H
∂(D2�)

− D4 ∂H
∂(D3�)

+ · · · . (3.6)

For the Hamiltonian (3.1) we find

�t = 4D�D2� + 2�D3� − 1

1 + ε

[
Ď6

ε� + iεD4(D2�Ď3
ε−1�)

]
, (3.7)

with corresponding component version

ut = 6uux − ∂3
x,εu − 2ξξxx +

ε − ε2

1 + ε

[
∂3
x,ε−2uξxξxx + ∂2

x,ε−2uξxξxxx + ∂x(∂x,ε−2uξxξxxx)
]
,

ξt = 4uξx + 2ξux − iε

1 + ε

(
3∂2

x,ε−1uξxx + 2∂x,ε−1uξxxx + ∂3
x,ε−1uξx

)
. (3.8)

As we expect (3.7) and (3.8), (3.8) reduce to (2.1) and ( 2.4), (2.5), in the limit ε → 1,
respectively.
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4. Conclusion

We have discussed various possibilities to introduce PT -symmetrically deformed
superderivatives. The most interesting cases are those just involving deformed derivatives
acting on the bosonic field, i.e. D̃n

ε and Ďn
ε as defined in (2.30) and (2.38), respectively. We

have demonstrated that these derivatives can be employed very systematically to construct new
PT -symmetric extensions of the sKdV equation. Most of these extensions are mere fermionic
extensions, that is they involve fermionic superfields, but do not preserve the invariance
under a supersymmetry transformation. Remarkably it is also possible to find genuinely
supersymmetric extensions. Furthermore, these models allow for a Hamiltonian formulation.
This means we may also think of these latter models as new supersymmetrized versions of the
KdV equation.

Clearly with regard to these new models there are many interesting questions left to be
explored. It remains to be settled whether these models possess non-trivial higher charges
and if the conservation laws survive the deformation procedure [18, 23]. Possibly the new
models are even integrable. Nonetheless, even when they turn out to be non-integrable one
may exploit the rich properties of the underlying integrable model and treat the new models
as perturbations of the former. This is somewhat similar in spirit as studying non-integrable
quantum field theories as perturbations of integrable models, see e.g. [24]. Further interesting
properties to investigate are the nature of the solutions these equations possess, what type of
additional symmetries they allow [25], etc.

Besides these issues centered around the sKdV equation one may of course use the
deformed superderivatives in other contexts to construct new PT -symmetric deformations in
the same spirit. Most immediate would be to consider the sKdV equation involving bosonic
rather than fermionic superfields and its N = 2 version.
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